
Load Balancing: The Long Road from Theory to
Practice∗

Sebastian Berndt1, Max A. Deppert2, Klaus Jansen3, Lars Rohwedder4

1 University of LÃ¼beck, Germany
s.berndt@uni-luebeck.de

2 TU Hamburg-Harburg, Germany
max.deppert@tuhh.de

3 University of Kiel, Germany
kj@informatik.uni-kiel.de

4 Maastricht University, Netherlands
l.rohwedder@maastrichtuniversity.nl

Keywords : Combinatorial Optimization, Integer Programming, Approximation
Algorithms.

1 Introduction
Makespan minimization on identical parallel machines (often denoted by P ||Cmax)
asks for a distribution of a set J of n = |J | jobs to m ≤ n machines. Each job
j ∈ J has a processing time pj and the objective is to minimize the makespan,
i.e., the maximum sum of processing times of jobs assigned to a single machine.
More formally, a schedule σ: J → {1, . . . , m} assigns jobs to machines. The load
ℓσ,i of machine i in schedule σ is defined as

∑
j∈σ−1(i) pj and the makespan µ(σ) =

maxi{ℓσ,i} is the maximal load. The goal is to find a schedule σ minimizing µ(σ).
This is a widely studied problem both in operations research and in combinatorial
optimization and has led to many new algorithmic techniques. For example, it has
led to one of the earliest examples of an approximation scheme and the use of the
dual approximation technique [5].

2 Known Results
The problem is known to be strongly NP-hard and thus we cannot expect to find
an exact solution in polynomial time. Many approximation algorithms that run in
polynomial time and give a non-optimal solution have been proposed for this prob-
lem. From a theory point of view, the strongest approximation result is a polynomial
time approximation scheme (ptas) which gives a (1 + ε)-approximation, where the

∗Published on ALENEX 2022 [3] and GitHub [2]. Supported by German Research Foundation (DFG) project JA
612/20-1



precision ε > 0 can be chosen arbitrarily small and is given to the algorithm as
input. This goes back to a seminal work by Hochbaum and Shmoys [5]. The run-
ning time of such schemes for P ||Cmax were drastically improved over time [1, 6, 9]
and the best known running time is 2O(1/ε log2(1/ε)) log(n) + O(n) due to Jansen
and Rohwedder [8] (extension of [7] by the theory of discrepancy), which is sub-
sequently called the JR-algorithm. The JR-algorithm is in fact an algorithm for
integer programming, but gives this running time when applied to a natural for-
mulation of P ||Cmax. A ptas with a running time of f(1/ε) · nO(1) like in the
JR-algorithm is called an efficient polynomial time approximation scheme (eptas).
It follows from the strong NP-hardness that no fully polynomial time approxima-
tion scheme (fptas), an approximation scheme polynomial in both n and 1/ϵ, exists
unless P = NP. Furthermore, for any δ > 0, there is no ptas for P ||Cmax in time
2O((1/ε)1−δ) + nO(1), unless the exponential time hypothesis (eth) fails [4].

ptas’s are often believed to be impractical. They tend to yield extremely high
(though polynomial) running time bounds even for moderate precisions ϵ, see Marx [10].
By some, the research on ptas’s has even been considered damaging for the large
gap between theory and practice that it creates [12]. Although eptas’s (when
fptas’s are not available) are sometimes proposed as a potential solution for this
situation [10], we are not aware of a practical implementation of an eptas. For
example, an approximation scheme for euclidean tsp was implemented by Rodeker
et al., but the algorithm was merely inspired by an eptas and it does not retain
the theoretical guarantee [11]. Although this is an interesting research direction as
well, it remains an intriguing question whether one can obtain a practically relevant
eptas implementation with actual theoretical guarantees. On the one hand, we
believe that this is an important question to ask concerning the relevance of such
a major field of research. On the other hand, such a ptas implementation has
great advantages in itself, since it exhibits a clean and generic design that is not
specific to any concrete precision, as well as a (theoretically) unlimited potential of
the precision.

3 Our Results
As a major milestone we obtain a generic ptas implementation that achieves in rea-
sonable time a precision which beats the best known guarantee of a polynomial time
non-ptas algorithm. This precision to the best of our knowledge is 2/11 ≈ 18.2%,
which is guaranteed by the MULTIFIT algorithm. The claim might appear vague,
since the running time depends not only on ϵ, but also on the instance. We be-
lieve that it is plausible nevertheless: The algorithm we use, which is based on
the JR-algorithm, reduces the problem to performing O(log(n)) many fast Fourier
transformations (ffts), where the size of the fft input depends only on ϵ and not
the instance itself. Hence, the running time for all instances (using the same preci-
sion) is very stable and predictable. This is in the spirit of an eptas running time.
We successfully run experiments of our implementation for a precision of ϵ < 2/11
and thus make the claim that this precision is practically feasible in general. This
is also the main message of our paper. For completeness, we provide comparisons



of the solution quality obtained empirically. While the theoretical guarantee of the
ptas is better, the difference to non-ptas algorithms is marginal at this state and it
is not yet evident in the experiments. The execution of the ptas is computationally
expensive and the considered precision is on the edge of what is realistic for our im-
plementation. However, we believe that further optimization or more computational
resources can lead to also empirically superior results. Nevertheless, the successful
execution with a low precision value forms a proof of concept for practical ptas’s.

Towards obtaining such an implementation we need to fine-tune the JR-algorithm
significantly. In particular, it requires non-trivial theoretical work and novel algo-
rithmic ideas. In fact, our variant has a slightly better dependence on the precision,
namely 2O(1/ϵ log(1/ϵ) log log(1/ϵ)), giving the best known running time for this prob-
lem. Our approach also greatly reduces the constants hidden by the O-notation.
We first construct an integer program (ip) — the well-known configuration ip —
that implies a (1 + ϵ)-approximation by rounding the processing times. This ip
has properties that allow sophisticated algorithms to solve it efficiently. We present
several reduction steps to simplify and compress the ip massively. As extensions of
this configuration ip are widely used, we believe this to be of interest in itself. For
the makespan minimization problem, we obtain an ip where the columns of the con-
straint matrix have ℓ∞-norms bounded by 2 and ℓ1-norms bounded by O(log(1/ε)).
In contrast, in the classical configuration integer program used in many of the pre-
vious ptas’s both of these norms are bounded by O(1/ε). This allows us to greatly
reduce the size of the fft instances in the JR-algorithm without losing the theo-
retical guarantee. For example, for ϵ ≈ 17.29%, our reduced ip lowers the instance
sizes for fft from 4912 words for the configuration ip to 512 words. Another im-
portant aspect in the algorithm is the rounding of the processing times. In general,
one needs to consider only O(1/ϵ log(1/ϵ)) different rounded processing times (to
guarantee a precision of ϵ). This number has great impact on the size of the fft
instances. For concrete ϵ the general rounding scheme might not give the optimal
number of rounded processing times. We present a mixed integer linear program
that can be used to generically optimize the rounding scheme for guaranteeing a
fixed precision ϵ (or equivalently, for a fixed number of rounded processing times).

4 References

[1] Noga Alon, Yossi Azar, Gerhard J. Woeginger, and Tal Yadid. Approximation
schemes for scheduling on parallel machines. Journal of Scheduling, 1:55–66,
1998.

[2] Sebastian Berndt, Max A. Deppert, Klaus Jansen, and Lars Rohwedder. Im-
plementation of the BDJR algorithm. https://github.com/made4this/BDJR,
2021.

[3] Sebastian Berndt, Max A. Deppert, Klaus Jansen, and Lars Rohwedder. Load
balancing: The long road from theory to practice. In Proc. ALENEX 2022,
2022.

https://github.com/made4this/BDJR


[4] Lin Chen, Klaus Jansen, and Guochuan Zhang. On the optimality of exact
and approximation algorithms for scheduling problems. J. Comput. Syst. Sci.,
96:1–32, 2018.

[5] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algo-
rithms for scheduling problems theoretical and practical results. J. ACM,
34(1):144–162, 1987.

[6] Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap
for makespan scheduling via sparsification techniques. Math. Oper. Res.,
45(4):1371–1392, 2020. doi:10.1287/moor.2019.1036.

[7] Klaus Jansen and Lars Rohwedder. On integer programming and convolution.
In Proc. ITCS 2019, pages 43:1–43:17, 2019.

[8] Klaus Jansen and Lars Rohwedder. On integer programming, discrepancy, and
convolution. Math. Oper. Res., 2022. doi:10.1287/moor.2022.1308.

[9] Joseph Y.-T. Leung. Bin packing with restricted piece sizes. Inf. Process. Lett.,
31(3):145–149, 1989. doi:10.1016/0020-0190(89)90223-8.

[10] Dániel Marx. Parameterized complexity and approximation algorithms. Com-
put. J., 51(1):60–78, 2008. doi:10.1093/comjnl/bxm048.

[11] Bárbara Rodeker, M. Virginia Cifuentes, and Liliana Favre. An empirical anal-
ysis of approximation algorithms for euclidean TSP. In Proc. CSC 2009, pages
190–196. CSREA Press, 2009.

[12] Frances Rosamond. Parameterized complexity-news. The Newsletter of the
Parameterized Complexity Community Volume, 2006.

https://doi.org/10.1287/moor.2019.1036
https://doi.org/10.1287/moor.2022.1308
https://doi.org/10.1016/0020-0190(89)90223-8
https://doi.org/10.1093/comjnl/bxm048

